Stress May Drive Plant Patterns

نویسنده

  • Robin Meadows
چکیده

Plants grow in a wondrous assortment of patterns, from simple to complex, with near mathematical precision. Honeysuckles sprout leaf pairs at regular intervals along their stems, for instance, whereas some succulents form double spirals turning in opposite directions. The big question is how do they do this? New research reported in this issue of PLoS Biology suggests that mechanical stress is at the root of plant patterns, challenging the longstanding theory that the plant hormone auxin acts alone to direct this patterning. Regardless of the growth pattern, new leaves and flowers arise from blobs of pluripotent cells at shoot tips (the shoot apical meristem, or SAM). Auxin triggers the transformation of these shoot tip cells into new organs and is also linked to plant growth patterns—when a given SAM cell has high auxin levels, the neighboring cells form clusters of an auxin export protein (PINFORMED1 or PIN1) in the parts of their plasma membranes that border the auxin-rich cell. This sets up an auxin circulatory system in which the auxin-rich cells get even more of this hormone, further boosting their growth. But although this chemical signaling could drive plant patterning in theory, it is difficult to see how it would work in actuality. Because auxin lacks directional effects in cells, it is unlikely to cause PIN1 clustering, leaving the origin of plant designs a mystery. Recently, however, Marcus Heisler and colleagues showed that mechanical stress is linked to the direction of organ growth, and here they reveal that stress is also linked to plant patterning. Whereas auxin initiates leaf and flower development, the direction of this new growth depends on the orientation of microtubules in cell cytoskeletons. Plant plasma membranes are encased in sturdy cell walls that contain load-bearing components, such as cellulose, and chemical treatments that modify the mechanical properties of these walls can disrupt plant patterning. The researchers had previously found that when cell walls of the small flowering plant Arabidopsis thaliana are perturbed mechanically, the orientation of shoot tip microtubules reflects the resulting mechanical stress patterns. To see if stress also directs PIN1 clustering in shoot tips, the researchers treated Arabidopsis with isoxaben, which weakens cell walls by inhibiting cellulose synthesis. Treated shoot tip cells keep growing despite the absence of additional cellulose, which presumably increases the stress on their cell walls. The researchers then visualized the distributions of microtubules and PIN1. Before isoxaben treatment, microtubules were randomly oriented in many shoot tip cells, whereas after treatment, these cytoskeletal components formed thick bundles that were aligned as expected relative to increased stress. Likewise, PIN1 clustering in isoxaben-treated cells also matched the predicted stress patterns. For example, PIN1 was predominantly in cell corners, and corners are associated with high stress in structures. As an additional test of whether mechanical forces could generate these observed PIN1 patterns, the researchers developed a mathematical model accounting for stress, auxin transport and PIN1 dynamics. The model confirmed that cell wall stress could generate PIN1 distribution patterns, which could in turn generate plant growth patterns that, like those found in nature, are periodic. The researchers propose that patterning depends on the following chain of events: as a given shoot tip cell expands, stress levels in the adjacent cell walls of neighboring cells increase. This causes PIN1 clustering in the adjacent plasma membranes of neighboring cells, which then export auxin to the expanding cell, which then grows even larger. Periodic PIN1 distribution patterns would then give rise to periodic shoot tip cell growth, thus creating the overall pattern of leaf or flower growth. Besides accounting for plant patterning just as well as the chemical signaling model, this new mechanical signaling model has the added benefit of explaining additional observations. For example, root formation can be induced mechanically in Arabidopsis. And flower primordium initiation can be induced by pectin methylesterase, which likely changes the viscoelastic properties of cell walls by altering the degree of pectin cross-linking. Although it will be important to test this mechanical model further experimentally, this work makes a compelling case that a common mechanism—stress—drives both the microtubule orientations and the PIN1 polarities critical to the beautiful patterns of leaves and flowers in the world around us. It will be interesting to investigate other possible roles for mechanical signaling in

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterns of mitochondrial gene expression in rapeseed leaves (Brassica napus L.) at early growth stage in response to drought stress

Drought stress adversely affects a plant’s growth and productivity. Wide ranges of molecular disorders could be caused by the production of reactive oxygen radicals. Plant cells have developed potential systems to prevent such damage by scavenging and reducing the reactive oxygen species (ROS). In this study, both the genotypes of oilseed rape-tolerant and sensitive to drought-were exposed to p...

متن کامل

Effect of different root endophytic fungi on plant community structure in experimental microcosms

Understanding the effects of root-associated microbes in explaining plant community patterns represents a challenge in community ecology. Although typically overlooked, several lines of evidence point out that nonmycorrhizal, root endophytic fungi in the Ascomycota may have the potential to drive changes in plant community ecology given their ubiquitous presence, wide host ranges, and plant spe...

متن کامل

Banding Patterns Activity of Antioxidant Enzymes and Physiological Indices in the Maize (Zea mays L.) Genotypes under Water Deficit Stress

Extended Abstract Introduction and Objective: Various environmental stresses, especially water deficit stress have several and major effects on maize growth and production. Drought is one of the abiotic stresses that due to the great variety of rainfall conditions, it is known from Iran as the most important factor limiting the growth and production of crops. Therefore, the effect of water def...

متن کامل

Modern Topology& Thermal Analysis of Drive for Variable Speed Pumped Storage Power Plant

Given the significant power generation and consumption of variable-speed pumped storage power plants (VSPSPs), it is crucial to enhance drive methods and decrease drive losses, thereby increasing productivity. This paper proposes the topology for VSPSP drivers with two level voltage source converters (2LVSC) with 6+1 converters. Hydraulic and electrical VSPSP models are presented, following whi...

متن کامل

رابطه الگوهای غذایی و غلظت سرمی کورتیزول در بیماران مبتلا به دیابت نوع دو

Background: Physiological stress may affect eating habits and also foods intake may alter the physiological stress. According to the reports of high levels of serum cortisol as a stress biomarker in type 2 diabetic patients the aim of this study was to investigate the relationship between dietary patterns and serum cortisol concentration in type 2 diabetic patents. Methods: This cross-section...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2010